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The Steady-State Rate of a Chain Reaction for the Case of Chain Destruction at Walls 
of Varying Efficiencies1 

BY GUENTHER VON ELBE2 AND BERNARD LEWIS3 

Bursian and Sorokin s4 treatment of the rate 
of a chain reaction with destruction of the chain 
carriers at the wall considers only the case that 
every chain carrier striking the surface is de
stroyed. It is, however, well known that walls 
possess different efficiencies, as is shown, for 
example, by experiments with hydrogen atoms. 
The efficiencies may range from the order of 
100% to < 0.001%. Recently, Kassel and Storch6 

have treated the problem for a spherical vessel 
with varying efficiencies of the chain-breaking 
process. For the average concentration of chain 
carriers ri, transcendental equations are obtained. 
The reaction rate is equal to Kch, where c is the 
concentration of the gas with which the chain car
rier undergoes reaction and K is the velocity coef
ficient. 

In the present paper, the consequences of the 
theory for the experimental study of an unknown 
reaction are discussed. In particular, the in
fluence of vessel diameter on the rate is described 
quantitatively by tabulation, since this can be 
done without knowledge of the reaction mecha
nism and since it serves adequately to explore 
regions of special kinetic interest. I t is also 
shown that the exact transcendental equations 
can be replaced with good approximation by 
simple equations of the type customarily em
ployed in kinetic work. This will serve to show 
the extent to which former treatments are valid. 

It has often been assumed6,7 that, in a qui
escent mixture where chain carriers reach the wall 
by diffusion only, the concentration of chain 
carriers may be determined from the equation 

s = "0A2I? ~ ") (1) 
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in which W0 is the rate of chain initiation per unit 
volume, an is the net rate of chain branching 
(a being the difference between the velocity 
coefficients of the rate of chain branching and the 
rate of chain destruction in the volume if such 
exists), p is the pressure, and d is a linear dimen
sion of the reaction vessel. The term {const./pd2)n 
would then be the rate of chain destruction at 
the wall, the constant being in some way depend
ent on the efficiency of chain destruction. The 
limitations of equation 1 do not seem always 
to have been fully appreciated. As will be seen 
later, the equation is approximately correct only 
for chain initiation in the gas phase, for rela
tively high efficiencies of chain destruction, and 
for vessel diameters and pressures that are not 
small compared with those necessary to induce • 
explosion under the same conditions. 

The two cases of chain initiation at the wall 
and in the gas phase will now be considered. 
For both cases chains are assumed to branch in 
the gas phase and to break principally at the 
wall. 

Chain Initiation at the Wall 

The concentration of chain carriers, n, at any 
distance, a, from the center of the spherical vessel 
of radius, r, is found by integrating the differen
tial equation expressing that the change of con
centration with time due to diffusion and net rate 
of branching is zero and introducing the boundary 
condition that the net rate of branching through
out the volume is equal to the rate of surface 
destruction of chains minus the rate of production 
of new chains at the surface. The rate of de
struction of chains at the surface is e times the 
rate at which the chain carriers strike it, e being 
the efficiency of chain destruction with values 
ranging from 0 to 1. 

The introduction of the boundary condition 
to determine the integration constant A in the 
expression n = f (a) (equation 4 of Kassel and 
Storch6) requires the determination of the total 
number of chain carriers in the volume, that 

is, solution of I i-waHia. Substituting for A 
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equation 158 of Kassel and Storch, and solving for 
the average concentration of chain carriers, one 
obtains 

'a/D r ctn V a/D r 

ynu> 

' ]• 

Lx i 
l - X / r (2) 

+ « 'a/D r ctn Va/D r 
m0 is the rate of chain initiation per unit area 
and y is the ratio of surface to volume and is 
equal to 3/r. Therefore, ym0 is the volume 
equivalent of the rate of chain initiation. D is 
the diffusion coefficient and X is the mean free 
path. 

n can have only positive values. The cori-
dition « = co marks the limit of the steady state 
where the reaction becomes explosive. Beyond 
this limit, that is, within the explosive region, 
equation 2 would give negative values for Ji. 
It follows by inspection of equation 2 that for 
n to be positive \/a/D r must not exceed T and 
as s/a/D r approaches ti, e must approach 1. 

Important deductions regarding the influence 
of experimental conditions on n may be made 
from the power series expansion of equation 2 
for the limiting condition that \/a/D r is close 
to zero. The term 1 — y/a/D r ctn \/a/D r re
duces to o -̂ J-. If D = - j - (v being the average 
molecular velocity) and \/r <C 1, equation 2 be
comes 

(ir 3D \ 
V. 

(V 
( ! - • ) « 

(3) 

For small values of e the positive term in the 
denominator becomes identical with the coeffi
cient of the rate of chain destruction. Ih con
tradistinction to the corresponding term in equa
tion 1, it is inversely proportional to the radius 
and independent of pressure if e is independent 
of pressure. The functional dependence of e is 
determined by the mechanism of the chain-
destroying reaction in which will enter the 
natures of the surface and the chain carrier and 
possibly pressure, temperature and mixture com
position. If Vi - ( = I" Y Ji » (1 - 0 a, n becomes 

(8) More exactly, the term — sin \^a/D r in their equation 15 

should be replaced by — sin \/a/D (r — X). 

(9> The difference between this value of D and the usual value 
v\/3 arises from the assumption that all free paths are equal as 
has been done in Kassel and Storch's' treatment. 

independent of vessel size and dependent on pres
sure, temperature and mixture composition only to 
the extent that m0/tv is dependent on these factors. 
Experimentally, this region is of particular inter
est, since it allows a direct kinetic investigation 
of the ratio of the chain-initiating reaction to the 
efficiency of chain destruction. This much-
needed separation of variables finds its counter
part in the independent kinetic investigation of 
a from the determination of the explosion regions 
in a diagram of any two of the variables pressure, 
temperature, mixture composition, vessel size. 

The condition '/«— 3> (1 - «) a can be ap
proached by making r small or by decreasing a in a 
manner that does not simultaneously decrease 
* to the same or to a greater degree. This would 
demand that the functional dependence of e on 
any variable shall be a milder one than the de
pendence of <* on that Variable. As far as pres
sure and mixture composition are concerned this 
limitation would seem to be the usual case. 
a may be made small by reducing the pressure 
of the reactants involved in the branching reac
tion. Frequently, a can be made small by de
creasing the temperature but here one often en
counters very complex functional dependencies 
of both a and «. This is illustrated by the re
action between oxygen and higher hydrocarbons.10 

Whenever the rate of a chain reaction is found 
to be independent of diameter there exist only 
two alternatives. Either the above-discussed 
case applies or chains are both initiated and de
stroyed in the gas phase. In the latter case, how
ever, the rate will remain independent of di
ameter for all diameters, whereas in case chains 
are initiated and destroyed at the wall, branching 
causes the rate eventually to increase with in
creasing diameter. No such well-defined cri
terion for distinguishing these two cases is ob
tained by varying the pressure, temperature or 
mixture composition. 

It has usually been found difficult to determine 
with accuracy the dependence of the reaction rate 
on diameter. There may be various reasons for 
this, the most obvious being the difficulty of 
controlling, experimentally, properties of the sur
face on which m0 and e depend. Often, it has 
only been possible to state that a reaction rate is 
either independent of or roughly dependent on 
some power of the diameter. In the light of the 

(10) Von Elbe and Lewis, T H I S JOURNAL, 89, 97rS (19317). 
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above results and others to be presented later, 
even such comparatively rough experimental 
data may provide considerable knowledge con
cerning the reaction mechanism. 

The dependence of the reaction rate on di
ameter will now be investigated quantitatively. 
For given values of *, X, D and a there exists a 
vessel radius rn at which' the rate becomes ex
plosive, that is, n = oo. For radii r < r„ the slow 
steady-state rate will be established, that is, it is 
finite i.nd positive. 

From equation 2 and X/r < 1 

^ = ( l - V~a/Dracln ^/Dr0)- (1 - «) (4) 

t is small compared with 1 unless \/<x/D r„ is very 
close to 7T. If, for example, X/r is of the order 
10 - s corresponding to low pressures (a few mm. 
mercury) and ordinary vessel dimensions, t is 
greater than the order of 0.1 only when \/a/D r„ 
exceeds 0.99 jr. For higher pressures, -Va/D r» 
must approach even closer to v before t reaches 
this value. 

Combining equations 2 and 4, the exact equa
tion becomes 

_ 1 

1 — V<*/D r0 ctn VaJT) r0
 r 

an 
7 "to 

(1 - » ( ' , - _ 

(5) 

ra/D r cln VaID r r° I 

If n is independent of diameter the function 
ahr»/ym{<,r must be constant. Values of this func
tion calculated from equation 5 for \/a/D r0 from 0 
to T and r/r„ from 0 to 1 are given in Table I. The 
corresponding values of -^ p — a r e given in the 
second horizontal line. It is seen that the range 
of diameters within which the reaction rate is 
reasonably independent of diameter widens for 

increasing values of y . _ -. Thus, for er,,/X = 0, 

about a 10% increase in the value of the function 
occurs between r/r<> = 0 and 0.1, whereas for 
tfVX = r„/X the same increase occurs between 
r/r„ = 0 and 0.4. It is plain that for otherwise 
identical conditions the replacement of a vessel 
with a wall of high chain-breaking efficiency by 
one with low chain-breaking efficiency should 
markedly increase the dependence of the reaction 
rate on vessel diameter. 

The following considerations give some idea 

of the magnitude of« for a given value of ~ •-••_ — 

In the usual experiments the pressure may 
be between a few millimeters and 1 atmos
phere, for which X is of the order 10 ~2 to 10 -4 

cm., respectively. Values of the explosion ra
dius r.i depend on a number of conditions. In 
actual experiments it will probably not be less 

than the order of 10 cm. Thus, when •-" . - -

14.S0, t would not be larger than 0.01 to 0.0001, 
depending on the above pressure range. This 
example illustrates that the effect of t on the 
dependence of the rate on diameter becomes 
noticeable only in vessels with walls having ex
tremely small chain-breaking efficiencies. 

The influence of t on the reaction rate itself 
is very pronounced over the whole range of values 
from 0 to 1, the rates decreasing with increasing e. 

Previously, non-transcendental equations were 
obtained for h on the basis of Bursian and Soro-
kin's treatment, which strictly apply only to the 
case of large efficiency of chain destruction (« 
close to 1) and to the neighborhood of the ex
plosion limit.6 It will now be shown that for 
this condition, namely, -Va/D r close to r, equa
tion 2 can be reduced to a non-transcendental 
equation that describes with good approximation 
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all the essential features of the theory. The 

term 1 — -V a/D r ctn \/a/D r now reduces, in the 

limit, to 1/(J Va/D - I j or the general form 

27(y 2 1 - 1) wherex = 0 , 1 , 2, 3 . . . and y = (r/r)-

•V a/D. The desired reduction is obtained for 

x = 1. If X/V <C 1 equation 2 becomes 

_ 7«o 

K(S-O-']-
(6) 

T o compare equation 6 with equation 2 for 
the influence of diameter, tr/\ must be expressed 
as a function of r0. This expression is obtained 
readily from equation 4, since V a/D r0 is also 
close to ir. Thus 

ctrl 

• f - d 
Ta 

t) 

Combining equations 6 and 7 

an 
/^D 

(1 

(7) 

(8) 

A direct comparison of equations 8 and 5 is fur
nished by the tabulat ion of the rat io Ws/ws for the 
entire range of V a/D r0 and r/r0. This is given 
in Table I . I t is seen tha t equation 8 follows the 
trend of equation 5 over practically the entire 
range. Even in the columns toward the right 
of Table I it represents the region in which the 
rate is independent of vessel size over much the 
same range of r/r0 as equation 5. The gradual 
improvement of the numerical agreement toward 
the left of Table I is accompanied by an increasing 

(T 1 
but always unimportant discrepancy in -̂ j — — 
introduced through equation 7. Thus by the 
approximate t rea tment reaction vessels possess 
apparent chain-breaking efficiencies t ha t are 
smaller than the actual ones. Ratios of such 
apparent to actual efficiencies calculated from 
equations 7 and 4 are listed in the third horizon
tal line in Table I. 

The comparison of equations 2 and 6 will now 
be made in a perfectly general way, to include 
variations not only in diameter bu t in any physi
cal condition such as pressure, temperature and 
mixture composition. According to equation 2, 
the condition for explosion may be written 

1 - (VajD r)o ctn (VaJB r)„ = (~ Y~) 

and according to equation 6 

(9) 

^ - ( r r U « 
If (V ' a /D r)0 is close to 0, the left hand sides of 

equations 9 and 10 become g (^j - J and -2 (^ j - J , 

respectively. Since V a/D r is ordinarily also close 
to 0, both equations 2 and 6 after substituting 
equations 9 and 10, respectively, become identi
cal, namely 

an _ 1 
•yma ~ , /(ar2/0)o 

1 " • ( 

(H) 
1 ar*/D 

I t is now clear why «8/»5 should have been found 
er 1 

equal to 1 for ^ ^ _ .t equal to 0 (Table I ) . 

Let us now consider y/a/D r <C (-Va/D r\ for 
any value of the lat ter between 0 and ir. The more 
complete expansion of 1 — V ' a /D r ctn V a/D r 

, 1 of1 , 1 a2r4 , 
given by § --£-•+ 45 -p r + •••> whence 

1 3D 1 
ar2 

IS 

1 ar2 

1 + — — 4-1 ^ 15 Z) ^ 

The 
1 — Va/D r ctn Va/D r 

corresponding term in equation 6, ^ ( ^ r _ 1 J = 

f l _ ^ 2 % " ) becomes, for small values of 

As \/a/D r be-

JT3D 

2ar2 becomes, for 

y/a/D r, equal to Z-
2 ' a f 

1 ' <i n 

comes small the 
""2 D 

two denominators, namely, 
1 ar1 1 ar2 

1 + 15 "g" and 1 + —2 -jj approach 1 almost simul
taneously. Thus, both equations 2 and 6 ap
proach an identical form almost simultaneously 
(apart from an unimportant numerical factor). 
This explains why the range over which the rate 
may be considered independent of diameter should 
have been found almost equally well described by 
equation 8 (Table I ) . 

I t has now been; demonstrated tha t the ap
proximate t rea tment (equation 6) is satisfactory 
for small chain-breaking efficiencies from slow 
reaction to explosion and for any chain-breaking 
efficiency in the region where the reaction rate 
is reasonably independent of diameter. The 
equation applies strictly to the range for which 
it was derived, namely, large chain-breaking 
efficiencies and reaction rates close to explosion. 
There remains the intermediate range in which 
discrepancies between approximate and exact 
t reatments would be greatest. This range can
not be investigated in a general^way because the 
functional dependencies of e, a, D and X vary for 
different reactions. Only for changes in vessel 
size is a comparison possible. Judging from the 
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rather satisfactory agreement (Table I) it may 
be expected that for most kinetic purposes with 
emphasis placed on trend rather on exact numeri
cal agreement, the approximate treatment win be 
found satisfactory. 

Chain Initiation in the Gas Phase 
In this case the concentration of chain carriers 

at any distance from the center of the spherical 
vessel is found by integrating the differential 
equation expressing the fact that the change of 
concentration with time due to diffusion, net 
rate of branching and initiation is zero and in
troducing the boundary condition that the net 
rate of branching plus the rate of chain initiation 
throughout the volume is t times the rate at which 
chain carriers strike the surface. Using the same 
treatment as before, except that now n = f(o) 
and the integration constant A are given by 
equations 13 and 14,11 respectively, of Kassel 
and Storch,6 one obtains 

V.= 
(14) 

«o S«-w 
1 -

, , — ( i — i) 
'a/D r Ctn Va/D r tT 

- 1 (12) 

and the rate of chain destruction is now inversely 
as the diameter. In this case, if 3/4 tv/r » a 
the reaction rate is proportional to the first power 
of the diameter. 

It immediately becomes apparent that for 
the case of chain initiation in the volume, the 
region in which the reaction rate is proportional 
to the first or second power of the diameter ac
quires similar importance for the study of reaction 
kinetics as the region of independence of diameter 
in the case of wall initiation. In the region of 
strict diameter-squared proportionality, n is pro
portional to tio/D, whereas in the region of di
ameter to the first-power proportionality it is 
proportional to n0/ev. The separate investigation 
of a can be made by a study of the explosion 
regions as mentioned before. 

Equation 12 will now be investigated for the 
dependence of reaction rate on diameter. tr/\ 
is again given by equation 4. Combining equa
tions 4 and 12, one obtains 

" • * ( -

where W0 is the rate of 
, an 

chain initiation per unit ~ = 

volume. 
As before, in order that 

n be positive -\J~afD r must not exceed T and as 
V a/D r approaches tr, t approaches 1. 

For V a/D r close to 0, the series expansion 
1^" 

1 

ra/r 

Va/D r ctn Va/D r 1 - Va/D r0 ctn Va/D /DrJ 
- 1 (15) 

1 - Va/D r ctn VaJD r 1 + i 2? + 
T 15 B T 

1 ar* 
becomes equal to 1 - ^ -fi and equation 12 re
duces to, for X/r <£ 1 

n* 
IbD 

(13) 

1 + f (1 - 0 

5X It is seen that if — (l - « ) < ! the rate of chain 
tr 

destruction is inversely proportional both to the 
pressure and to the square of the diameter. If, 
in addition, \5D/r2 » a, the reaction rate is 
proportional to the square of the diameter. If 
5X • 
— (1 - ») » 1, equation 13 becomes 

(11) Strictly, a factor of 1 — X/ro should be inserted in tbe numera
tor of equation 14 of Kassel and StorcU. 

Table II contains values of the functions 

— -° and — •,- calculated from equation 15 for 
Wo r Wo r* * 

y/a/D r0 from 0 to r and r/r0 from 0 to 1. Wherever 
these functions can be considered constant with re
spect to r/r0, the rate is proportional to the first 
or second power, respectively, of the diameter. 
It is seen that the range of diameters within 
which the reaction rate is reasonably proportional 
to the first power of the diameter decreases as 
y . _ increases and that even in the most favor
able case (efo/X = 0) it does not begin until small 
fractions of the explosion diameter. For «r0/\ 
= r0/X there is no range over which the diameter 
to the first-power proportionality holds. In the 
latter case there is a large range of diameters 
over which the reaction rate is proportional to 
the square of the diameter. This range is con
siderably decreased and is shifted toward larger 
ratios of r/r0 as y ^ r - , decreases. It is seen that 
most of this narrowing and shifting of the range 
occurs for large values of -r-° . _~- There is very 
little additional change below 14.80, 

file://-/J~afD
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The influence of € on the reaction rate itself 

varies with /j—•_•- and r/r0. It is largest for 

small values of these functions and becomes rather 
negligible for large values. 

Again, the essential features of the theory can 
be expressed with good approximation by a non-
transcendental equation derived from equation 
12 for the condition that y/~aJD r is close to 7r. 
Using the series expansion given earlier in con
nection with equation 6, equation 12 for X/r <K 1 
reduces to 

= (0/V) Ho 

1 LaV2 »,.-.,]. 
- I 

Since • , — 1 and (f-(I - «) become vanishingly 

small for \/a/D r close to ir, the reduction may 
be carried further to 

( 0 / T » ) no 

T1D 

"r2' 

(10) 

1 + ~ (1 - .) 

It can again be demonstrated that equation 
If) is for most kinetic purposes a satisfactory 
substitute for equation 12, as was shown earlier 

for equation fi. This will be perhaps sufficiently 
evident from the similarity of equations l.'J and 
Hi, which were derived for opposite extremes. 
It is demonstrated in Table II specifically for 
the case of diameter dependence by the columns 
(«ie/«u). 

Summary 

The steady-state treatment of chain reactions 
in which chains are broken at walls of varying 
efficiencies is discussed. Two cases are consid
ered, namely, chain initiation at the wall and in 
the gas phase. It is shown that under conditions 
of negligible branching there exist characteristic 
relations between rate and vessel diameter. This 
may be used for a kinetic study of the unbranched 
reaction, whereas the branching reaction may 
be studied from explosion limits. The influence 
of vessel diameter on the rate has been described 
quantitatively for varying chain-breaking effi
ciencies. It is also shown that the exact tran
scendental equations may be replaced with good 
approximation by simple non-transcendental 
equations. 
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